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The concepts of definite and determinate Sobolev moment problem are intro-
duced. The study of these questions is reduced to the definiteness or determinacy,
respectively, of a system of classical moment problems by means of a canonical
decomposition of the moment matrix associated with a Sobolev inner product in
terms of Hankel matrices. � 1999 Academic Press
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1. INTRODUCTION

In the past two decades, there has been a growing interest in the study
of the so-called Sobolev inner products and the orthogonal polynomials
defined by them. Such inner products are of the form

( f, g)S= :
d

k=0

( f (k), g (k)) k , (1)
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where d # N is a fixed nonnegative integer,

( f, g) k=|
7k

f (x) g(x) d+k(x), k=0, 1, ..., d,

and (+0 , ..., +d), +d {0, is a system of positive measures whose supports
satisfy

supp(+k)/7k /R, k=0, 1, ..., d .

For a survey on recent advances of the algebraic aspect of the theory,
inner products defined with classical weights, and the so-called coherent
pairs of measures see [1] and [5]. Recently, some important steps have
been taken in the study of the asymptotic properties of Sobolev orthogonal
polynomials defined through general measures. An account on this matter
may be found in [4]. Nevertheless, to our knowledge, the moment theory
of Sobolev inner products has not been treated so far. The object of this
paper is to fill this absence.

We consider the following question (hereafter the S-moment problem).
Given

(M; 70 , 71 , ..., 7d),

where M=(ci, j)
�
i, j=0 is an infinite matrix of real numbers, and 7k ,

k=0, 1, ..., d, are subsets of the real line, find a system of d+1 positive
measures (+0 , +1 , ..., +d) with supp(+k)/7k , k=0, 1, ..., d, +d {0, such
that

ci, j=(xi, x j ) S # R, i, j=0, 1, ..., (2)

takes place. In what follows, the values ci, j are called S-moments. When
7k=R, k=0, 1, ..., d, we drop 7k from the notation and refer to the
SH-moment problem (Sobolev�Hamburger moment problem) for M.

Definition 1. We say that the S-moment problem for (M; 70 , 71 , ..., 7d),
is definite if it has at least one solution. This problem is said to be determinate
if the solution is unique.

It is easy to see that when d=0, necessary and sufficient conditions for
the corresponding S-moment problem to be determinate are that (i) M be
a Hankel matrix, and (ii) the ordinary moment problem for the sequence
[ci] of numbers given by the first row of M be determinate. In this sense,
the S-moment problem extends the classical moment problem. Thus, in
what follows, we refer indistinctly to the (M; 7) or the ([ci]; 7) moment
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problem. We reduce the study of the S-moment problem to a system of
d+1 classical moment problems.

Before stating the main result, let us introduce some necessary notation.
Let us assume that the S-moment problem (M; 70 , ..., 7d ) has for solution
the system of measures (+0 , ..., +d). Denote by M=(ci, j)

�
i, j=0 the infinite

matrix whose entry at the position (i, j) is the S-moment ci, j given by (2).
Due to (1) and (2), we have

ci, j= :
$

k=0

i !
(i&k)!

j !
( j&k)! |7k

xi+ j&2k d+k(x),
(3)

$=min[i, j, d], i, j=0, 1, ... .

Let M (k)=(ck
i )�

i=0 be the moment matrix associated to the measure +k ,
k=0, 1 , ..., d, where

ck
i =|

7k

xm d+k .

M (k), k=0, 1, ..., is a Hankel matrix. From (3), it follows that

ci, j= :
$

k=0

i !
(i&k)!

j !
( j&k)!

ck
i+j&2k , i, j=0, 1, ..., (4)

with $=min[i, j, d]. Set S k=(sk
i, j)

�
i, j=0 , with

sk
i, j={

i !
(i&k)!

,

0

i& j=k, k=0, ..., d,

otherwise.
(5)

Notice that S k equals the k th power of the matrix S 1 and, in particular,
S0 is the infinite identity matrix. In what follows, At denotes the transpose
of (the finite or infinite) matrix A. Considering the formal product between
infinite matrices (which is well defined because Sk and (Sk)t have in each
row and column at most one element different from zero), from (4) we
have

M= :
d

k=0

S kM (k)(S k)t . (6)

This equality is the matrix form of relations (4).
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Let us return to the general problem. We have

Theorem 1. Given (M; 70 , ..., 7d ), the S-moment problem is definite
(determinate) if and only if M admits a decomposition of the form (6), where
M (k), k=0, ..., d, are Hankel matrices, S k is defined by (5), and the moment
problems (M (k) ; 7k) are definite (determinate) for each k.

This paper is divided as follows. In Section 2, we obtain some auxiliary
results. We show that a matrix M admits only one decomposition of type
(6) if any. Then we give some criteria which allow us to determine when
M can be decomposed in such form. Theorem 1 is proved in Section 3 and
some corollaries are given which follow from the classical moment theory.
Section 4 is devoted to the connection between the moment matrix M and
the recurrence relation, which satisfy Sobolev orthogonal polynomials.

2. AUXILIARY RESULTS

In this section, our main object is to study when an infinite matrix M is
decomposable in the form (6) for some set [M (k) : k=0, 1, ..., d], M (d){0,
of Hankel matrices and Sk as defined above. This question has an algebraic
character. We will assume that M is a real symmetric matrix because
obviously this is a necessary condition for (6) to take place since Hankel
matrices are symmetric. The following lemma is the key to all further
considerations.

Lemma 1. Let M=(ci, j)
�
i, j=0 be an infinite symmetric matrix and M (k),

k=0, 1, ..., d, infinite Hankel matrices such that (6) takes place and M (d){0.
Then this is the unique decomposition of this form of M.

Proof. Assume that M� (0), M� (1), ..., M� (d$) are also infinite Hankel matrices
with respect to which (6) takes place, M� (d$){0. We must prove that d=d $
and M (k)=M� (k), k=0, ..., d.

For definiteness, we can assume that d $�d (if d�d $ the proof follows
the same arguments). If d $<d, we complete the matrices M� (k) with zero
matrices for k=d $+1, ..., d.

Notice that for any matrix A, the first k rows (and columns) of S kA(S k)t

are identically equal to zero. Since

M=S 0M (0)(S0)t+ :
d

k=1

S kM (k)(Sk)t=S 0M� (0)(S 0)t+ :
d

k=1

S kM� (k)(S k)t

(7)
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and

M (0)=S0M (0)(S0)t, M� (0)=S0M� (0)(S0)t

it follows that the first row of M (0) and M� (0) coincide with the first row of
M. Since M (0) and M� (0) are Hankel matrices, we obtain that M (0)=M� (0).
From this and (7),

M&S0M (0)(S 0)t=S 1M (1)(S1)t+ :
d

k=2

S kM (k)(S k)t

=S1M� (1)(S1)t+ :
d

k=2

S kM� (k)(S k)t.

The second row of �d
k=2 S kM (k)(S k)t and �d

k=2 SkM� (k)(S k)t are identi-
cally zero; therefore, the second row of S1M (1)(S 1)t and S1M� (1)(S 1)t coin-
cide with the second row of M&S0M (0)(S 0)t. From this, it immediately
follows that the first row of M (1) is identical to that of M� (1). Since these are
Hankel matrices they are equal. Repeating the same arguments, we obtain
that M (k)=M� (k), k=0, ..., d. Therefore, d $<d is not possible because then
M� (d )=0{M (d ). Thus d=d $ and consequently M (k)=M� (k), k=0, ..., d. K

The proof of the previous lemma gives a practical method for finding the
matrices M (k) if one knows in advance that M is decomposable in the form
(6). One needs some necessary and sufficient condition in terms of the
elements of M to determine if such a decomposition is possible. Before
proving the corresponding result (Theorem 2 below), we need some auxiliary
relations.

Lemma 2. For i, j # N and d # [0, 1, ...] fixed, we have

:
i

k=&

(&1)k&&

(k&&)!
(i+ j&&&k&1)!

(i&k)! ( j&k)!
=0, &=0, 1, ..., j�i. (8)

and

:
d

k=&

(&1)d&k

(k&&)! (d&k)!
i+ j&2k

(i&k)( j&k)
(i+ j&k&d&1)!

(i+ j&k&&)!

=
(i&d&1)! ( j&d&1)!

(i&&)! ( j&&)!
, &=0, 1, ..., d, i, j>d. (9)
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Proof. Let us prove (8). Consider the polynomial

p(z) :=(1+z) i&&&1=(1+z) i+ j&2&&1 \1&
z

1+z+
j&&

.

Taking into account the binomial formula,

p(z)= :
j&&

n=0

(&1)n \ j&&
n + zn(1+z)i+ j&2&&n&1

= :
j&&

n=0

(&1)n \ j&&
n + :

i+ j&2&&n&1

m=0
\i+ j&2&&n&1

m + zm+n . (10)

Since deg p=i&&&1, the coefficient corresponding to zi&& in (10) must be
equal to zero. That is,

0= :
i&&

n=0

(&1)n \ j&&
n +\i+ j&2&&n&1

i&&&n + .

Taking n=k&& , we obtain (8).
In order to prove (9), first let us consider the case when &=0; that is,

:
d

k=0

(&1)d&k

k!(d&k)! \
1

i&k
+

1
j&k+

(i+ j&k&d&1)!
(i+ j&k)!

=
(i&d&1)! ( j&d&1)!

i! j!
.

(11)

Notice that

si (i+ j, d) := :
d

k=0

(&1)d&k

k!(d&k)!
1

i&k
(i+ j&k&d&1)!

(i+ j&k)!

=
1

1 2(d+1)
:
d

k=0

(&1)d&k

i&k \d
k+

1(i&k+ j&d ) 1(d+1)
1(i&k+ j+1)

=
1

1 2(d+1)
:
d

k=0

(&1)d&k \d
k+

1
i&k

;(i&k+ j&d, d+1),

(12)

where 1(m)=(m&1)!, m # Z, and ;(m, n)=1(m) 1(n)�1(m+n) are,
respectively, the usual gamma and beta functions. Using in (12) the integral
representation of the beta function, we obtain
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si (i+ j, d )

=
1

1 2(d+1)
:
d

k=0

(&1)d&k \d
k+ |

1

0

xi&k

i&k
x j&d&1(1&x)d dx

=
1

1 2(d+1)
:
d

k=0

(&1)d&k \d
k+ |

1

0
x j&d&1(1&x)d |

x

0
ti&k&1 dt dx

=
1

1 2(d+1) |
1

0
x j&d&1(1&x)d |

x

0
t i&d&1 \ :

d

k=0

(&1)d&k \d
k+ td&k+ dt dx

=
1

1 2(d+1) |
1

0
x j&d&1(1&x)d |

x

0
t i&d&1(1&t)d dt dx. (13)

Analogously, one proves that

sj (i+ j, d )=
1

1 2(d+1) |
1

0
ti&d&1(1&t)d _|

t

0
x j&d&1(1&x)d dx& dt. (14)

Formulas (13) and (14) (after interchanging integrals in (14)) allow us to
rewrite the left hand of (11) as

si (i+ j, d )+sj (i+ j, d )

=
1

1 2(d+1) _|
1

0
x j&d&1(1&x)d dx&_|

1

0
ti&d&1(1&t)d dt&

=
1

1 2(d+1)
;( j&d, d+1) ;(i&d, d+1)=

1( j&d ) 1(i&d )
1( j+1) 1(i+1)

,

which proves (9) for &=0.
Now, let & # [1, 2, ..., d]. The change of parameters k=k� +&, d=d� +&,

i=@� +&, j=}� +& allow to reduce the left hand of (9) to the case just
studied. That is, the left hand of (9) equals

:
d�

k� =0

(&1)d� &k�

k� ! (d� &k� )!

@� +}� &2k�
(@� &k� )(}� &k� )

(@� +}� &k� &d� &1)!

(@� +}� &k� )!

=
(@� &d� &1)! ( }� &d� &1)!

@� ! }� !
, @� , }� >d� ,

which is equivalent to the expression on the right hand of (9). With this we
conclude the proof. K

The next result gives us conditions under which an infinite matrix M
verifies (6).
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Theorem 2. Let M=(ci, j)
�
i, j=0 be an infinite real matrix. A necessary

and sufficient condition in order that there exist infinite Hankel matrices
M (0), M (1), ..., M (d ) satisfying (6) is

ci, j = :
d

k=0

:k(i, j) ck, i+ j&k , \i, j # N, i, j>d,
(15)

ci, j =cj, i , \i, j=0, 1, ...,

where

:k(i, j)=
(&1)d&k

k!(d&k)!
i+ j&2k

(i&k)( j&k)
(i+ j&k&d&1)!

(i+ j&k)!
i ! j !

(i&d&1)! ( j&d&1)!
.

(16)

Proof. First we prove that condition (15) is necessary. Since the Hankel
matrices M (0), M (1), ..., M (d ) are symmetric, from (6) we have that M is a
symmetric matrix and the second part of (15) holds. Moreover, if (6) holds
with M (k)=(ck

i, j)
�
i, j=0 , for each k=0, 1, ..., d, then since M (k) is a Hankel

matrix there exists a sequence of numbers [ck
p], p=0, 1, ..., such that

ck
i, j=ck

p whenever i+ j= p. With this definition of the numbers ck
p , it

follows from (6) that (4) takes place for all ci, j . In particular, for each
k=0, 1, ..., d fixed and i, j�d,

ck, i+ j&k= :
k

&=0

k!
(k&&)!

(i+ j&k)!
(i+ j&k&&)!

c&
i+ j&2& . (17)

Moreover, from (4), (9), and (16), for i, j>d we obtain

ci, j= :
d

&=0

i!
(i&&)!

j !
( j&&)!

c&
i+ j&2&

= :
d

&=0

i !
(i&d&1)!

j !
( j&d&1)!

c&
i+ j&2& _(i&d&1)! ( j&d&1)!

(i&&)! ( j&&)! &
= :

d

&=0

i !
(i&d&1)!

j !
( j&d&1)!

c&
i+ j&2&

__ :
d

k=&

(&1)d&k

(k&&)! (d&k)!
i+ j&2k

(i&k)( j&k)
(i+ j&k&d&1)!

(i+ j&k&&)! &
= :

d

k=0

:k(i, j ) :
k

&=0

k!
(k&&)!

(i+ j&k)!
(i+ j&k&&)!

c&
i+ j&2& , i, j>d.

Then, using (17), we arrive to (15).
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Now, we prove that condition (15) is sufficient. We may define the
Hankel matrices M (k)=(ck

m, n)�
m, n=0 for k=0, 1, ..., d, where ck

m, n=ck
j if

m+n= j, and ck
j is defined as

ck
j := :

k

&=0

(&1)k&&

&! (k&&)!
( j+2k&2&)( j+k&&&1)!

( j+2k&&)!
c&, j+2k&& . (18)

We wish to show that (6) holds. For this purpose, take

M� = :
d

k=0

S kM (k)(S k)t. (19)

If M� =(c~ i, j), from (19) we obtain

c~ i, j= :
$

k=0

i !
(i&k)!

j !
( j&k)!

ck
i+ j&2k , i, j=0, 1, ..., (20)

where $=min[i, j, d]. Using the expression for ck
i+ j&2k given by (18) and

substituting in (20), we find that

c~ i, j= :
$

k=0

i !
(i&k)!

j !
( j&k)!

:
k

&=0

(&1)k&&

&!(k&&)!

_
(i+ j&2&)(i+ j&k&&&1)!

(i+ j&&)!
c&, i+ j&&

= :
$

&=0

i! j !(i+ j&2&)
&!(i+ j&&)!

:
$

k=&

(&1)k&&

(k&&)!
(i+ j&k&&&1)!

(i&k)! ( j&k)!
c&, i+ j&& . (21)

We must prove that c~ i, j=ci, j , i, j=0, 1, ... . Since M and M� are
symmetric matrices (see (15) and (20)) it is sufficient to consider that i� j.
If i�d, we have that $=i and (21) can be expressed as

c~ i, j=ci, j+ :
i&1

&=0

i! j !(i+ j&2&)
&!(i+ j&&)!

:
i

k=&

(&1)k&&

(k&&)!
(i+ j&k&&&1)!

(i&k)! ( j&k)!
c&, i+ j&& .

Because of (8) in Lemma 2, we obtain

c~ i, j=ci, j . (22)
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If d<i, since c~ k, i+ j&k=ck, i+ j&k for k�d (see (22)), from (15) and (20)
we have

ci, j= :
d

k=0

:k(i, j) c~ k, i+ j&k= :
d

k=0

:k(i, j) :
k

&=0

k!(i+ j&k)!
(k&&)! (i+ j&k&&)!

c&
i+ j&2&

= :
d

&=0

:
d

k=&

:k(i, j)
k!(i+ j&k)!

(k&&)! (i+ j&k&&)!
c&

i+ j&2&

= :
d

&=0

i !
(i&d&1)!

j !
( j&d&1)!

_ :
d

k=&

(&1)d&k

(d&k)!
i+ j&2k

(i&k)( j&k)
(i+ j&k&d&1)!

(i+ j&k&&)! (k&&)!
c&

i+ j&2& .

Thus, from (9)

ci, j= :
d

&=0

i !
(i&&)!

j !
( j&&)!

c&
i+ j&2& ,

which is c~ i, j according to (20). K

A consequence of the sufficiency proof of Theorem 2 and Lemma 1 is

Corollary 1. Assume that M=(ci, j)
�
i, j=0 admits a decomposition of

form (6), then for each k=0, ..., d the sequence [ck
j ], j=0, 1, ..., which deter-

mines the Hankel matrix M (k)=(ck
m, n)�

m, n=0 , where ck
m, n=ck

j , if m+n= j,
is given by formula (18).

Proof. In fact, if M satisfies (6) for some (M (0), ..., M (d )) then (15)
holds. In this case, in the proof of Theorem 2, it was shown that M also
satisfies (6) for M� (0), ..., M� (d ), where M� (k)=(ck

m, n)�
m, n=0 and

ck
m, n=ck

j = :
k

&=0

(&1)k&&

&!(k&&)!
( j+2k&2&)( j+k&&&1)!

( j+2k&&)!
c&, j+2k&& ,

if m+n= j.

But according to Lemma 1 the decomposition of M in form (6) is unique,
thus M (k)=M� (k) and the elements of M (k) are given by formula (18). K

Remark 1. Formula (9) for &=0 indicates that

:
d

k=0

:k(i, j)=1

373SOBOLEV INNER PRODUCT



for each pair (i, j) of indices. That is, from Theorem 2, we know that it
is possible to write each entry ci, j of an anti-diagonal of M as a linear
combination (15) of the first d+1 elements in this anti-diagonal whose
coeffients sum one, c0, i+ j , c1, i+ j&1 , ..., cd, i+ j&d . In this sense these
matrices generalize Hankel matrices.

3. THE S-MOMENT PROBLEM

We are ready for the study of the definiteness and determinacy of the
S-moment problem (M; 70 , ..., 7d).

Proof of Theorem 1. Assume that the S-moment problem is definite. As
we saw in the introduction (6) takes place with M (k) the moment matrix
associated with the measure +k . Therefore, the ordinary moment problems
(M (k) ; 7k) are definite for each k=0, ..., d. If for some k the moment
problem (M (k) ; 7k) is indeterminate, then obviously the S-moment problem
is indeterminate because we would have two measures +1

k , +2
k giving the

same moment matrix M (k) without affecting relations (4) (equivalent to (6))
and thus (2) would take place for the sets of measures (+0 , ..., +1

k , ..., +d) and
(+0 , ..., +2

k , ..., +d). This settles the necessity.
Conversely, if for each k=0, ..., d the moment problem (M (k) ; 7k) is

definite then there exist measures +0 , ..., +d whose moment matrices are
M (0), ..., M (d ) respectively. From (6), we have that the elements ci, j of M
are related with the elements of the Hankel matrices M (0), ..., M (d ) through
relations (4) which imply (2). That is, the S-moment problem is definite.
Suppose that the S-moment problem is not determinate. Then there exist
two distinct systems of measures (+1

0 , ..., +1
d), (+2

0 , ..., +2
d), supp(+ i

k)/7k ,
i # [1, 2], k=0, ..., d, whose Hankel matrices (M (0)

1 , ..., M (d )
1 ), (M (0)

2 , ..., M (d )
2 )

are related with M through (6). According to Lemma 1, M (k)
1 =M (k)

2 ,
k=0, ..., d. But at least for some k, +1

k {+2
k and supp(+ i

k)/7k , i=1, 2.
This means that the moment problem (M (k) ; 7k) is indeterminate. With
this we conclude the proof. K

From Theorems 1 and 2, we obtain

Corollary 2. Given (M; 70 , ..., 7d ) the S-moment problem is definite
(determinate) if and only if

(i) (15) holds;

(ii) for each k=0, 1, ..., d, the ordinary moment problem ([ck
j ]; 7k) is

definite (determinate), where ck
j is given by (18).
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Proof. It is sufficient to point out that according to Theorem 2, (6) and
(15) are equivalent. On the other hand, from Corollary 1 we have that
under (6) the elements ck

i of the first row of the Hankel matrix M (k) are given
by formula (18). The rest of the proof follows directly from Theorem 1. K

Theorem 1 is the link needed in order to translate results from the classical
theory of moments into the context of the Sobolev moment problem.
Before stating some of these consequences, let us introduce some new
notation. For all n # N, set

2k
n := }

ck
0

ck
1

b
ck

n&1

ck
1

ck
2

b
ck

n

} } }
} } }
. . .
} } }

ck
n&1

ck
n

b
ck

2n&2
} , (2k

n) (1) := }
ck

1

ck
2

b
ck

n

ck
2

ck
3

b
ck

n+1

} } }
} } }
. . .
} } }

ck
n

ck
n+1

b
ck

2n&1
} ,

where ck
j , j=0, 1, ..., is given by (18).

Corollary 3. The SH-moment problem is definite if and only if

(i) (15) holds
(ii) for each k # [0, 1, ..., d], either

2k
n>0 for all n=1, 2, ...

or for some m # N we have

2k
1 , 2k

2 , ..., 2k
m>0 and 2k

j =0, j=m+1, m+2, ... .

Proof. It is immediate from Theorem 1 and the classical condition for
determinacy of the Hamburger moment problem (see [6, pp. 5]). K

The following two corollaries are also consequences of Theorem 1 and
known results for definiteness in moment theory (see [6, pp. 5�9; 2, p. 64]).

Corollary 4. A definite S-moment problem (M; 70 , ..., 7d ) has a
solution with

supp(+k)/[0, +�)

for some k # [0, 1, ..., d] if and only if either

2k
n>0, (2k

n) (1)>0 for all n=0, 1, ...,

or for some m # N we have

2k
n>0, (2k

n)(1)>0, n=0, 1, ..., m and 2k
n=(2k

n) (1)=0, n=m+1, ... .

375SOBOLEV INNER PRODUCT



Corollary 5. A definite S-moment problem (M; 70 , ..., 7d ) has a
solution with

supp(+k)/[a, b]

for some k # [0, 1, ..., d] if and only if

:
�

i, j=0

ck
i+ jx ixj , :

�

i, j=0

[(a+b) ck
i+ j&1&abck

i+ j&ck
i+ j&2] xi xj

are two non-negative infinite quadratic forms.

Regarding determinacy, we have (see [6, p. 19])

Corollary 7. A definite S-moment problem (M; 70 , ..., 7d ) such that
each set 7k , k=0, ..., d, is a bounded interval of the real line is determinate.

Corollary 7. A definite SH-moment problem is determinate if for each
k=0, ..., d

:
�

n=0

|ck
2n | &1�2n=�. (23)

In particular, this is true if

:
�

n=d

|cd, 2n&d |&1�2n=�. (24)

Proof. From (23), we have that Carleman's sufficient condition for
determinacy of the moment problem is satisfied for each (M (k), 7k), k=0, ..., d.
Hence, according to Theorem 1, the Sobolev moment problem is determinate.

From (4), we obtain

cd, 2n&d= :
d

k=0

d !
(d&k)!

(2n&d )!
(2n&d&k)!

ck
2n&2k , n=d, d+1, ... .

Since the terms on the right hand of this equality are all positive, it follows
that

ck
2n&2k�cd, 2n&d , k=0, ..., d.

Therefore, using (24), we have that for each k=0, ..., d,

�= :
�

n=d

|cd, 2n&d |&1�2n� :
�

n=d

|ck
2n&2k | &1�2n,

which is equivalent to what we needed to prove. K
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Notice that analogous sufficient conditions for the determinacy of the
SH-moment problem may be stated in terms of any of the rows of matrix
M below row d+1.

4. S-MOMENT MATRICES AND RECURRENCE RELATIONS
OF SOBOLEV ORTHOGONAL POLYNOMIALS

In the following, we assume that the S-moment problem (M; 70 , ..., 7d )
is definite. Let (+0 , +1 , ..., +d ) be a solution. We also assume that supp(+k)
is an infinite set for some k # [0, 1, ..., d]. The n th principal section Mn of
M is formed by the S-moments

ci, j=(zi, z j) S , i, j=0, ..., n&1.

From definition (1) and the fact that �d
i=0 supp(+i) contains infinitely

many points, it is obvious that ( } , } ) S defines a real positive definite quad-
ratic form on the space of polynomials of degree �n&1 and thus its
matrix representation Mn in the basis [1, z, ..., zn&1] is a real positive
definite matrix. In particular, from Sylvester's Theorem, for each n # N,
we have that the determinant of Mn is greater than zero for all n. Thus,
for each n, the following system of equations has a unique solution
(an, 0 , an, 1 , ..., an, n&1),

:
n&1

k=0

an, k (xk, x i ) S=&(xn, x i) S , i=0, 1, ..., n&1.

In other words, there exists a unique monic polynomial Pn of degree n,

Pn(x)=xn+ :
n&1

k=0

an, kxk,

such that

(Pn , xi )S=0, i=0, 1, ..., n&1.

Then [Pn], n=0, 1, ..., is the sequence of (monic) orthogonal polynomials
with respect to the inner product given by (1).

Let &P j&2
S=(Pj , Pj) S , j=0, 1, ... . We introduce the sequence [ pn],

n=0, 1, ..., of orthonormal polynomials

pn(z)=
Pn(z)
&Pn&S

, n=0, 1, ... .
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Obviously, the polynomial zpn&1(z) can be expressed in the form

zpn&1(z)= :
n

j=0

(zpn&1 , pj) S pj (z), n�1. (25)

Let

D=\
(zp0 , p0) S

(zp0 , p1) S

(zp1 , p0)S

(zp1 , p1) S

(zp1 , p2)S
. . .

(zp2 , p0) S

(zp2 , p1) S

(zp2 , p2) S
. . .

} } }
} } }
} } }
. . . + (26)

and Dm , m=1, 2, ..., be the mth principal section of D. By D t
m we denote

the transpose of Dm . For each z # C such that pm(z)=0, relations (25) can
be expressed in matrix form as

(Dt
m&zIm) vm(z)=0,

where

vm(z)t=( p0(z), p1(z), ..., pm&1(z)).

Thus, the zeros of pm are the eigenvalues of Dm . That is,

_(Dm)=[z : pm(z)=0] . (27)

For each n=1, 2, ... , Mn is a symmetric positive definite matrix; there-
fore, there exists a unique Cholesky factorization

Mn=TnT t
n (28)

(see [3]), where Tn is a lower triangular matrix of order n. It is well known
and easy to verify that Tn is the n th principal section of Tn+1 . Thus, Tn is
the n th principal section of an infinite lower triangular matrix T given by

{0, 0

{1, 0 {1, 1

T=\ b b . . . + , (29)

{i, 0 {i, 1 } } } {i, i

b b . . .

{i, j # R, i, j=0, 1, ... and {i, i>0, i=0, 1, ... .
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Theorem 3. For each n=1, 2, ..., we have

Tn \
p0(z)
p1(z)

b
pn&1(z) +=\

1
z
b

zn&1+ , for all z # C. (30)

and

Dn=T &1
n M$n(T &1

n )t,

where M$n is the nth principal section of the infinite matrix

c0, 1 c0, 2 } } }

M$=\c1, 1 c1, 2 } } } + ,

b b . . .

which is obtained eliminating the first column from M.

Proof. Let zm=�m
k=0 ;m, k pk(z), m=0, 1, ... . Notice that ;m, m>0, for

all m=0, 1, ... . Then

ci, j=(zi, z j ) S= :
i

k=0

:
j

r=0

;i, k ;j, r ( pk , pr) S ,

where ( pk , pr) S=$k, r , k, r=0, 1, ... . Thus

ci, j= :
min[i, j]

k=0

;i, k ; j, k .

On the other hand, from (28) and (29), we obtain

ci, j= :
min[i, j]

k=0

{i, k {j, k .

Thus, because of the uniqueness of the factorization (28), we have that
;i, k={i, k , i, k=0, 1, ... . That is,

zi= :
i

k=0

{i, k pk(z), i=0, 1, ...,

which is equivalent to (30).
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Set

pi (z)= :
i

h=0

#i, hzh, i=0, 1, ... .

From (30), we have

T &1
n =\

#0, 0

#1, 0

b
#n&1, 0

#1, 1

b
#n&1, 1

. . .
} } } #n&1, n&1

+ .

Therefore, for any fixed j=0, 1, ...,

zpj (z)= :
j

r=0

#j, rzr+1.

Let n�i, j. The entry (i, j) of Dn which is given by (zpj , p i ) S satisfies

( pi , zpj) S= :
i

h=0

:
j

r=0

#i, h #j, r (zh, zr+1) S= :
i

h=0

:
j

r=0

# i, h#j, r cr+1, h .

Therefore, it is the (i, j ) entry of matrix T &1
n M$n(T &1

n )t for any n�i, j . K

An immediate consequence of Theorem 3 is

Corollary 8. Let zn # _(Dn) and Dnwn=znwn with &wn &=1. Then

zn=(M$n(T &1
n ) t wn , (T &1

n )t wn).
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